
bacoli py - A Python Package for the Error Controlled Numerical

Solution of 1D Time-Dependent PDEs∗

Connor Tannahill†, Paul Muir‡

December 14, 2019

Abstract

Partial Differential Equations (PDEs) are widely used for modelling systems arising in many application

domains. When considering a PDE-based model, one must typically make use of numerical methods to com-

pute approximations to the solutions of the PDEs. When solving a problem numerically, the accuracy of the

computed solution should, of course, be of substantial concern. Error control algorithms attempt to generate

approximate solutions which are accurate to within a user-prescribed error tolerance. In this way, the user can be

reasonably confident that the solution which is being returned will be accurate to within the requested tolerance.

Additionally, the cost of the computation can be expected to be proportional to the requested tolerance.

In this report, we introduce bacoli py, a Python 3 package for solving 1D time-dependent PDEs with error

control. This package wraps modified versions of the Fortran 77 packages, BACOLI [1] and BACOLRI [2] so

that these algorithms can be used in a far more user-friendly environment. This report provides a description

of the components of this Python package and discusses several examples which demonstrate its usage. Some

explanation of the underlying algorithms is also given in order to help in understanding many of the optional

arguments which can be provided to the solver to enable more effective computations.

∗This work was supported by the Mathematics of Information Technology and Complex Systems Network, the Natural Sciences and
Engineering Research Council of Canada and Saint Mary’s University.

†Saint Mary’s University, Halifax, NS, Canada, B3H 3C3
‡Saint Mary’s University, Halifax, NS, Canada, B3H 3C3

1

1 Introduction

Partial Differential Equations (PDEs) are fundamental tools in mathematical modelling. PDE models are frequently

employed to model complex phenomena occurring in areas such as epidemiology [3], image processing [4], etc..

Numerical algorithms must typically be employed to compute numerical approximations to the solution. Error

control algorithms compute approximate solutions which have an estimated error which is within a user-specified

error tolerance. In this way, the user can be reasonably confident that they have obtained an approximate solution

which has a level of accuracy appropriate for the application. In this report, we introduce bacoli py, an open-

source Python module which can be used to compute error controlled numerical solutions to one dimensional

time-dependent PDEs of the form

ut(t, x) = f(t, x,u(t, x),ux(t, x),uxx(t, x)), x ∈ [xa, xb], t ∈ [t0, tout], (1)

where u : R× R→ Rn and f : R× R× Rn × Rn × Rn → Rn , with initial conditions

u(t, x0) = u0(x), x ∈ [xa, xb], (2)

where u0 : R→ Rn and separated boundary conditions

bL(t,u(xa, t),ux(xa, t)) = 0, bR(t,u(xb, t),ux(xb, t)) = 0, t ∈ [t0, tout], (3)

where bL, bR : R× Rn × Rn → Rn and 0 ∈ Rn, and where n ≡ npde is the number of PDEs.

This solver wraps the Fortran packages BACOLI [1] and BACOLRI [2], the most recent members of a family

of B-spline Gaussian collocation error control solvers for this problem class. These solvers have been shown to

efficiently compute numerical solutions to general 1D PDEs of the form (1-3) which are typically accurate to within

a user-specified error tolerance [5, 6]. In order to employ these solvers within this Python module, they were

modified in two significant ways: (i) the Almost Block-Diagonal linear system solver COLROW [7] was replaced

with the LAMPAK solver [8] to ensure copyright compliance and (ii) the calls to the function that defines (1)

were modified such that the cross-language callbacks could be done more efficiently through vectorization using

numpy [9] arrays. The purpose of this vectorization is to minimize the number of cross-language callbacks used

by re-organizing the code such that repeated evaluations of the main user callback routine are instead done in one

2

larger call to a modified user routine. Alternatively, compiled Fortran subroutines can be provided. The Python to

Fortran interface required for this package is generated using f2py [10].

The advantage of being able to apply these solvers within the Python language primarily comes with the

improvements which can be made in the user interface compared to what is necessary when using the low-level

Fortran codes directly. Additionally, the user can take advantage of the many high-quality tools which are easily

available within the Python ecosystem for analysis and visualization of results. These advantages do come at a cost

to performance, with bacoli_py being substantially slower than its Fortran equivalents in its standard usage. The

Python module is therefore primarily useful for initial prototyping and model exploration. For applications where

performance is of concern, the authors recommend the use of the Fortran versions of this software, available for

download at http://cs.smu.ca/~muir/BACOLI-3_Webpage.htm.

This report is structured as follows; Section 2 gives a description of the underlying BACOLI and BACOLRI

solvers, which serves both to explain how bacoli_py works internally, as well as to give context for many of the

optional arguments which can be provided to the solver. Section 3 gives an overview of the bacoli py module.

Section 4 provides some examples of the package applied to solve several test problems.

For more information and complete documentation, see https://bacoli-py.readthedocs.io/en/latest/.

bacoli_py can be downloaded from PyPi at http://pypi.python.org/pypi/bacoli-py. Source code is available

at https://github.com/connortannahill/bacoli_py.

2 Overview of BACOLI & BACOLRI

In this section, we provide an overview of BACOLI and BACOLRI, the solvers wrapped by bacoli_py. As mentioned

previously, these solvers compute approximate solutions to 1D time-dependent PDEs using an error control algo-

rithm. These solvers return an approximate solution which has an estimated error which is less than a user-provided

error tolerance. The purpose of this section is to explain the underlying algorithms employed in these solvers. This

knowledge is important for understanding many of the optional arguments of bacoli_py and provide some idea of

how these can be chosen for more efficient computation. We do not intend for this to be a complete description of

these algorithms, and indeed many important details are not included here. For more complete descriptions, see

[1, 11] and the references within.

The BACOL family of software (to which BACOLI and BACOLRI belong) represent the approximate solution

to a PDE a given point in time, t, as a linear combination of B-spline basis functions [12] of degree p. This

representation leads to a time-dependent, C1 continuous approximate solution in x.

Let xa = x0 < x1 < · · · < xnint = xb be a mesh of nint subintervals partitioning the spatial domain [xa, xb].

3

http://cs.smu.ca/~muir/BACOLI-3_Webpage.htm
https://bacoli-py.readthedocs.io/en/latest/
http://pypi.python.org/pypi/bacoli-py
https://github.com/connortannahill/bacoli_py

Then the approximate solution is represented as

U(t, x) =

NCp∑
i=1

yp,i(t)Bp,i(x), (4)

where yp,i(t) is an unknown time-dependant vector coefficient, Bp,i(x) is the ith B-spline basis function of degree

p, and NCp = nint(p− 1) + 2. The unknown coefficients in (4) are determined by requiring that the approximate

solution exactly satisfy the PDE at certain points in space. These conditions are referred to as the collocation

conditions, and the points at which they are imposed are called the collocation points. The number of collocation

points, kcol = p − 1, 3 ≤ kcol ≤ 10, used in computation can be set through the optional argument kcol. This

determines the order of accuracy in the spatial discretization of the PDE, as the spatial error in the collocation

solution (4) is O(hp+1), where h is the maximum subinterval size in the spatial mesh. Experimentation with kcol

choices in BACOLI was performed in [5], and while there is no general rule for the choice in kcol, we see that, in

general, for modest tolerance requests, e.g., 10−3, kcol values of 3, 4 or 5 have the best performance, while for sharp

tolerance requests, e.g., 10−6, kcol values of 6 or 7 are better.

The BACOL family implements Gaussian collocation, which prescribes that (4) satisfy the collocation conditions

d

dt
U(t, ξl) = f(t, ξl,U(t, ξl),Ux(t, ξl),Uxx(t, ξl)), (5)

l = 2, ..., NCp − 1, where the collocation points ξl are

ξl = xi−1 + hiρj ,

l = 1 + (i− 1)(p− 1) + j, i = 1, . . . , nint, j = 1, . . . , p− 1,

and {ρi}p−1
i=1 are the images of the order p − 1 Gauss points on [0, 1] and hi = xi − xi−1. The additional points

ξ1 = xa, ξNCp
= xb are where the approximate solution, U(t, x), is required to satisfy the BC’s,

bL(t,U(t, xa),Ux(t, xa)) = 0, bR(t,U(t, xb),Ux(t, xb)) = 0. (6)

Note that (5) is a system of time-dependent ordinary differential equations, which when coupled with (6), forms

4

a system of Differential Algebraic Equations (DAEs) which can be solved to obtain the B-spline coefficients in (4)

using standard error control solvers for DAEs.

It is at this point that BACOLI and BACOLRI algorithms diverge; BACOLI uses DASSL [13] for solving the

DAE system (5-6), whereas BACOLRI uses RADAU5 [14]. These two solvers implement different classes of time

integration formulas. DASSL makes use of a family of multi-step methods called Backwards Differentiation Formulas

(BDFs). RADAU5 is based on an fifth order Implicit Runge Kutta (IRK) method of Radau IIA type. As mentioned

in Chapter 3, BACOLRI out-performs BACOLI for certain classes of problems. This is due to instabilities seen

in higher-order BDF methods such as some of those implemented in DASSL. In particular, BACOLI performs

poorly for problems for which the DAE system (5-6) has a Jacobian with eigenvalues near the imaginary axis [11].

Restricting the maximum order of the BDF formulas used in DASSL by setting the optional arguments maxord

to 2 or less has been seen to allow BACOLI to converge to a solution but at substantial cost to its performance.

However, it has been seen that even with this restriction BACOLI struggles to reach its requested tolerance for

these problems [15].

After the collocation solution has been obtained through the solution to (5-6), a global, spatial, error estimate

is computed in order to determine whether the solution at the current step should be accepted. A scaled global

error estimate is computed for each solution component, Us(t, x), and is given by

Es(t) =

√√√√∫ xb

xa

(
Us(t, x)− Ūs(t, x)

ATOLs +RTOLs|Us(t, x)|

)2

dx, s = 1, ..., npde, (7)

where Ū(t, x) = (Ū1(t, x), . . . , Ūnpde(t, x))T is an approximate solution to the PDE at this point in time which has

spatial error of a different order of accuracy than U(t, x) (more on this later). Additionally, a second set of error

estimates is computed which are local to each subinterval in order to determine the distribution of the error in the

spatial domain,

Êi(t) =

√√√√npde∑
s=1

∫ xi

xi−1

(
Us(t, x)− Ūs(t, x)

ATOLs +RTOLs|Us(t, x)|

)2

dx, i = 1, . . . , nint. (8)

The solution at the current time step is accepted if the scaled error estimate (10) meets the tolerance for each

solution component, i.e., if

5

max
1≤s≤npde

Es(t) ≤ 1. (9)

If condition (9) is met then the step is accepted and the solver will repeat this process at the next time step in

order to advance the solution forward in time. Otherwise, the step is rejected and a spatial remeshing algorithm is

applied which attempts to compute a new mesh such that the computed solution obtained on this new mesh will

have a spatial error that satisfies the tolerances. This remeshing algorithm also attempts to keep nint as small as

possible, as the cost of the algorithm scales primarily based on this argument. This remeshing algorithm works by

(i) adjusting the number of mesh subintervals based on the magnitude of the spatial error estimates (7) and (ii)

using equidistribution to re-position the mesh points in regions where the error estimates are largest, as indicated

by the per-subinterval estimates (8). Note also that spatial remeshing may reduce nint when the spatial error

estimate is considerably beneath the tolerance. This is vital for efficient computation.

The error estimates (7) and (8) both depend on additional approximation to the solution of the PDE, Ūs(t, x).

One of the primary innovations of BACOLI and BACOLRI is the use of inexpensive, interpolation-based error

estimates. This error estimation can be accomplished in two ways based on how Ū(t, x) is computed; these two

methods are referred to as the SuperConvergent Interpolation (SCI) scheme and the Lower Order Interpolation

(LOI) scheme. The choice of what scheme to use is provided by the user through the optional s_est arguments,

which can take the values 'sci' for the SCI scheme or 'loi' for the LOI scheme.

The SCI scheme takes advantage of a known property of a solution approximation computed using Gaussian

collocation. In particular, for each subinterval, the SCI interpolates known points of supercovergence, i.e., points

where the error of solution and/or derivative values of the collocation solution have higher orders of accuracy than

the global collocation solution. In this case, Ū(t, x) is a C1 continuous piecewise polynomial composed of Hermite-

Birkhoff interpolating polynomials in each subinterval which interpolate a certain set of superconvergent values

associated with the subinterval. An issue when applying the SCI scheme is that the error of Ū(t, x), and hence the

accuracy of the error estimates depends on the ratios of the mesh subinterval sizes, which can become large in some

cases. While in most observed cases this does not cause any issues, it motivated the development of an alternative

form of error estimation which did not suffer from this issue, namely the LOI scheme.

The LOI scheme implements an alternative form of error estimation known as Local Extrapolation (LE) error

estimation. In standard error estimation, after an approximate solution has been computed, another solution of a

higher order of accuracy is generated to estimate the error of the computed solution, as in the SCI scheme. In LE

error control, rather than computing a higher order approximation to estimate the error in the computed solution,

6

a solution of one order less is computed. The error in this lower order approximation is then estimated using

the computed solution. While this clearly does not estimate the error in the computed solution, LE error control

provides a conservative upper bound for the error in the computed solution. In the LOI scheme, this lower order

approximation comes in the form of a Hermite-Birkhoff interpolate on each subinterval which has been constructed

such that its interpolation error is, asymptotically, equivalent to the leading order error term in a collocation solution

of one order of accuracy less than the collocation solution. See [1] for further details.

3 Description of bacoli py

3.1 Basic Usage

bacoli py provides a convenient, minimal, object-oriented programming interface. Standard usage of bacoli_py to

solve a PDE consists of just a few steps. The user must first define the system of npde PDEs they wish to solve

in terms of the Python callback functions f, bndxa, bndxa, uinit, which correspond to the PDE (1), left boundary

condition and right boundary condition (3), and initial conditions (2), respectively. These are encapsulated within

a ProblemDefinition object as

problem_definition = bacoli_py.ProblemDefinition(npde , f, bndxa , bndxb , uinit).

A Solver object which performs the main functionality of bacoli_py is then initialized. This can be done simply by

solver = bacoli_py.Solver ().

The Solver object contains the method solve, which is used to solve the PDE defined by a ProblemDefinition

object. The arguments to this method include a ProblemDefinition object, the initial point in time t0, the spatial

boundaries xa, xb, and the points in time and space at which the solution values are requested. A call to solve

takes the form

evaluation = solver.solve(problem_definition , initial_time , [xa , xb], tspan , xspan).

This call returns an Evaluation object containing the computed solution information. In particular, the approxi-

mation solution is contained, as an attribute in this object, as a numpy array with dimensions (npde, len(tspan),

len(xspan)),

u = evaluation.u

This summarizes the process of using bacoli_py in the majority of use cases. What follows in the next subsection

is a more complete description of this module, including its overall structure and descriptions of the many arguments

and settings which can be specified for more efficient computations.

7

3.2 Detailed Description

The bacoli_py module consists of the three main classes described previously, namely the ProblemDefinition, Solver,

and Evaluation classes. The contents of the module is given in Figure 1.

Figure 1: Contents of the bacoli_py module. In the diagram, **attrs refers to the attributes of the object, which
are simply the arguments in the signatures of their constructors.

To define the PDE to be solved, the user provides callback functions to define (1-3), which are collected in a

ProblemDefinition object, the full signature of which is

ProblemDefinition(npde , f, bndxa , bndxb , uinit , derivf = None , difbxa = None , difbxb =

None).

Solver is the primary class, with methods related to solving a given PDE. The full signature of this class is

Solver(nint_max = 500, kcol = 5, t_int = 'b', s_est = 'loi', maxord = None , ini_ss =

None).

Each of these objects must be initialized before a computation can be done. Definitions of the input arguments are

given in Listings 1 and 2.

8

nint_max (optional, default = 500):
– The maximum number of subintervals allowed for the spatial mesh during computation.

kcol (optional, default = 4):
– The number of collocation points per mesh subinterval. Then the degree in space of the numerical solution

is kcol+1 and the order of accuracy of the spatial discretization scheme is kcol +2. 3 ≤ kcol ≤ 10.

t_int (optional, default = 'b'):
– Determines which of the two adaptive error control time integration algorithms to be used. Choosing

t_int = 'b' means that time integration will be based on an adaptive order BDF method. A choice of

t_int = 'r' corresponds to the use of an algorithm based on a 5th order implicit Runge-Kutta method.

s_est (optional, default = 'loi'):
– Determines which of the two spatial error estimation schemes will be used. The choices are the Lower

Order Interpolant (LOI) local extrapolation error estimation scheme (s_est = 'loi') or the SuperCon-

vergent Interpolant (SCI) standard error estimation scheme (s_est = 'sci').

maxord (optional, default = 5):
– The maximum order of the BDF method to be used in time integration. Only used if t_int = 'b'. 1 ≤

maxord ≤ 5

ini_ss (optional, default = None):
– Initial step size for time integration. If not provided this will be chosen automatically.

Listing 1: Arguments for Solver.

npde:
– The number of PDE’s in the system to be solved.

f:
– System of npde PDE’s to be solved.

bndxa:
– Left boundary conditions for the system of PDEs.

bndxa:
– Right boundary conditions for the system of PDEs.

uinit:
– Initial conditions for the system of PDEs.

derivf (optional, default = None):
– Partial derivatives of the PDE system.

difbxa (optional, default = None):
– Partial derivatives of the left boundary conditions.

difbxb (optional, default = None):
– Partial derivatives of the right boundary conditions.

Listing 2: Arguments for ProblemDefinition.

The numerical solution computed when using bacoli_py is encapsulated in a Evaluation object, which has the signature

Evaluation(tspan , xspan , u, ux = None),

where u is a numpy array with u.shape = (npde, len(tspan), len(xspan)) containing the solution evaluations. If the first

spatial derivative values of the numerical solution are required, ux is an array of the same shape as u containing the derivative

9

evaluations at these points. The user accesses the solution information by simply using the attributes of the Evaluation

object, which are the arguments to its constructor.

The user can solve the PDE defined in ProblemDefinition using the Solver.solve method.

Solver.solve(problem_definition , initial_time , initial_mesh , tspan , xspan , atol = 1e-4,

rtol = 1e-4, dirichlet = False , tstop = None , vec = True , deriv = False).

A call to this method returns the solution at the requested tspan and xspan values, encapsulated in a Evaluation object.

The input arguments are described in Listing 3.

problem_definition:
– ProblemDefinition object for the PDE to be solved.

initial_time:
– Initial point in the temporal domain.

initial_mesh:
– The initial spatial mesh. Optionally, an array containing only [xa, xb] (in that order) can be given. In

this case, a mesh is automatically generated based on the initial conditions.

tspan:
– Vector or scalar containing times at which the solution will be output.

xspan:
– Vector or scalar containing points at which the solution will be output.

atol (optional, default = 1e-4):
– Absolute error tolerance. Can be either a scalar or a numpy array of size npde.

rtol (optional, default = 1e-4):
– Relative error tolerance. Can be either a scalar or a numpy array of size npde.

dirichlet (optional, default = False):
– Should be set to True whenever all of the boundary conditions are Dirichlet (more on this later.) Otherwise

set to False.

tstop (optional, default = None):
– Indicates the absolute end of the temporal domain. Used by the underlying time integrator. If not set,

the time integrator may step past the point in time at which a solution is requested and use interpolation

to evaluate the solution at the requested point. Only used if t_int = 'b'.

vec (optional, default = True):
– Boolean value indicating whether vectorization should be used to increase efficiency. Should only be

set to False when compiled Fortran subroutines are being provided for the callback functions in the

ProblemDefinition object (as in Section 4.4). Otherwise, vec should be set to True.

deriv (optional, default = False):
– Indicates whether solve should compute the first spatial partial derivative ux(t, x) at each of the requested

output points. If set to True then the Evaluation object returned will have the attribute Evaluation.ux,

a numpy array of the same dimension as Evaluation.u.

Listing 3: Arguments for Solver.solve.

10

4 Examples

In this section, we provide some examples of bacoli py applied to several PDEs while demonstrating the different modes of

operation available when using this package.

4.1 One Layer Burgers Equation

The first example is the One Layer Burgers Equation, given by the single PDE,

ut(t, x) = εuxx(t, x)− u(t, x)ux(t, x), ε ∈ R, (10)

with the initial conditions

u(t0, x) =
1

2
− 1

2
tanh

(
x− 1

4

4ε

)
, x ∈ [0, 1],

and the Dirichlet boundary conditions

u(t, xa) =
1

2
− 1

2
tanh

(
− 1

2
t− 1

4

4ε

)
, u(t, xb) =

1

2
− 1

2
tanh

(
3
4
− 1

2
t

4ε

)
, t ∈ [0, 1].

In this case the parameter ε is chosen to be 10−3. We look to solve this problem to obtain a numerical solution which is

accurate to within the error tolerance 10−6. We first describe this system in terms of Python callback functions, first globally

defining npde, the number of PDEs to be solved, and the problem-dependent parameter ε. These functions are then placed

within a ProblemDefinition object.

import bacoli_py

import numpy

from numpy import tanh , array

Specify the number of PDE's in this system.

npde = 1

Initialize problem -dependent parameters.

eps = 1.0e-3

Function defining the PDE system.

def f(t, x, u, ux , uxx , fval):

fval [0] = eps*uxx [0] - u[0]*ux[0]

return fval

Function defining the left spatial boundary condition.

def bndxa(t, u, ux , bval):

11

bval [0] = u[0] - 0.5 + 0.5* tanh((-0.5*t -0.25) / (4.0* eps))

return bval

Function defining the right spatial boundary condition.

def bndxb(t, u, ux , bval):

bval [0] = 0.5* tanh ((0.75 -0.5*t)/(4.0* eps)) - 0.5 + u[0]

return bval

Function defining the initial condition.

def uinit(x, u):

u[0] = 0.5 - 0.5 * tanh((x - 0.25) / (4.0* eps))

return u

Pack all of these callbacks and the number of PDE's into a

ProblemDefinition object.

problem_definition = bacoli_py.ProblemDefinition(npde , f=f,

bndxa=bndxa ,

bndxb=bndxb ,

uinit=uinit)

Once the ProblemDefinition is created, using bacoli py to solve the PDE is fairly straightforward, requiring only

• The creation of a Solver object

• Specification of the initial time t0

• An array [xa, xb] containing the spatial boundary points.

• The points at which the solution will be evaluated. This is done by providing a list of x points, xspan, and t points,

tspan, at which the evaluations of the numerical solution will be provided.

• The absolute (atol) and relative (rtol) error tolerances, i.e., how accurate we would like the solution to the PDE to

be. Here we set atol = rtol = 10−6.

Initialize the Solver object.

solver = bacoli_py.Solver ()

Set t0.

initial_time = 0.0

Define the spatial boundaries.

initial_mesh = numpy.array ([0.0, 1.0])

Choose output times and points. Here our final time t_end = 1.

tspan = numpy.linspace (0.001 , 1, 100)

xspan = numpy.linspace(0, 1, 100)

Solve this problem.

evaluation = solver.solve(problem_definition , initial_time , initial_mesh ,

tspan , xspan , atol=1e-6, rtol=1e-6,

dirichlet=True)

12

The solution obtained from this call is plotted in Figure 2

Figure 2: Numerical solution to One Layer Burgers Equation ε = 10−3, computed with atol = rtol = 10−6.

4.2 Catalytic Surface Reaction Model

For our second example, we consider a Catalytic Surface Reaction Model (CSRM), given by

(u1)t = −(u1)x + n(D1u3 −A1u1γ) + (u1)xx/Pe1,

(u2)t = −(u2)x + n(D2u4 −A2u2γ) + (u2)xx/Pe1,

(u3)t = A1u1γ −D1u3 −Ru3u4γ
2 + (u3)xx/Pe2,

(u4)t = A2u2γ −D2u4 −Ru3u4γ
2 + (u4)xx/Pe2, (11)

where γ = 1 − u3 − u4 and n, r, Pe1, P e2, D1, D2, R,A1, and A2 are problem-dependent parameters. The initial conditions

at t = 0 are

u1(0, x) = 2− r, u2(0, x) = r, u3(0, x) = u4(0, x) = 0, x ∈ [0, 1],

and the mixed boundary conditions are

13

(u1)x(t, 0) = −Pe2(2− r − u1(t,0)), (u2)x(t, 0) = −Pe1(r − u2(t, 0)),

(u3)(t, 0) = (u4)(t, 0) = 0,

(u1)x(t, 1) = (u2)x(t, 1) = (u3)x(t, 1) = (u4)x(t, 1) = 0, t ∈ [0, 18].

The values of the problem-dependent parameters are Pe1 = Pe2 = 10000, D1 = 1.5, D2 = 1.2, R = 1000, r = 0.96, n = 1, and

A1 = A2 = 30.

This system was written in terms of the appropriate Python callback functions and used to construct a ProblemDefinition

object as follows

npde = 4

Initialize problem -dependent parameters.

a1 = 30.0

a2 = 30.0

d1 = 1.50

d2 = 1.20

r = 1000.0

c = .96

n = 1.0

pe1 = 1.0 * 10**4

pe2 = 1.0 * 10**4

Set t0.

initial_time = 0.0

Function defining the PDE system.

def f(t, x, u, ux , uxx , fval):

fval [0] = -ux[0]+n*(d1*u[2]-a1*u[0]*(1.0 -u[2]-u[3])) + (1.0/ pe1)*uxx [0]

fval [1] = -ux[1]+n*(d2*u[3]-a2*u[1]*(1.0 -u[2]-u[3]))+(1.0/ pe1)*uxx [1]

fval [2] = a1*u[0]*(1.0 -u[2]-u[3])-d1*u[2]-r*u[2]*u[3]*(1.0 -u[2]-u[3]) **2 \

+(1.0/ pe2)*uxx [2]

fval [3] = a2*u[1]*(1.0 -u[2]-u[3])-d2*u[3]-r*u[2]*u[3]*(1.0 -u[2]-u[3]) **2 \

+(1.0/ pe2)*uxx [3]

return fval

Function defining the left spatial boundary condition.

def bndxa(t, u, ux , bval):

bval [0] = ux[0]+ pe1 *(2.0-c-u[0])

bval [1] = ux[1]+ pe1*(c-u[1])

bval [2] = ux[2]

bval [3] = ux[3]

return bval

Function defining the right spatial boundary condition.

def bndxb(t, u, ux , bval):

bval [0] = ux[0]

bval [1] = ux[1]

bval [2] = ux[2]

bval [3] = ux[3]

return bval

14

Function defining the initial conditions.

def uinit(x, u):

u[0] = 2.0-c

u[1] = c

u[2] = 0.0

u[3] = 0.0

return u

Instantiate problem definition object.

problem_definition = bacoli_py.ProblemDefinition(npde , f=f,

bndxa=bndxa ,

bndxb=bndxb ,

uinit=uinit)

The CSRM system can then be solved; here we use absolute and relative error tolerances of 10−6.

solver = bacoli_py.Solver ()

Initial time and uniform mesh.

initial_time = 0

initial_mesh = numpy.linspace(0, 1, 101)

Output points.

tspan = numpy.linspace (0.001 , 18, 1001)

xspan = numpy.linspace(0, 1, 1001)

Set a high level of error control.

atol = 1.0e-6

rtol = atol

evaluation = solver.solve(problem_definition , initial_time , initial_mesh ,

tspan , xspan , atol , rtol)

15

Figure 3: CSRM - u1(t, x) Figure 4: CSRM - u2(t, x)

Figure 5: CSRM - u3(t, x) Figure 6: CSRM - u4(t, x)

The solution components are plotted in Figures 3-6.

4.3 Nonlinear Schrödinger System

Up to this point we have given examples using t_int = 'b', which invokes the DAE solver that uses BDF time integration.

In the bacoli_py context this is generally the better choice. (In the Fortran context, the performance of the two codes

are comparable.) This is due to how the Python code interfaces with the underlying solvers. In BACOLI a family of BDF

time integration methods is used which performs fewer evaluations of the user-provided callback functions in comparison to

BACOLRI, which uses a high-order Runge-Kutta method for time integration. The cost of Fortran-to-Python invocations of

these callback functions was the primary performance bottleneck when implementing bacoli_py. While vectorization of the

16

primary user callback alleviated this issue to some extent, the Runge-Kutta method used in BACOLRI uses comparatively

more callback calls, which puts it at a disadvantage in this context.

However, there are examples of problems which BACOLI will, without some intervention within the underlying numerical

algorithm, fail to converge to a solution. Even after the intervention, the code does not obtain an error controlled solution.

This issue is related to stability issues associated with the BDFs [15]. BACOLRI was developed as a solution to this issue,

as its underlying numerical algorithms are well-suited for solving the problems for which BACOLI fails.

In this section we give an example which applies bacoli_py to one of these problems by employing the switch which

prescribes the use of a Runge-Kutta time integration method (by setting t_int = 'r').

We consider the nonlinear Schrödinger system, given by

(u1)t = i

(
1

2
(u1)xx + η(u1)x + (|u1|2 + ρ|u2|2)u1

)
,

(u2)t = i

(
1

2
(u2)xx − η(u2)x + (ρ|u1|2 + |u2|2)u2

)
, (12)

where i =
√
−1. The Neumann boundary conditions are given by

(u1)x(t, a) = (u2)x(t, a) = 0, (u1)x(t, b) = (u2)x(t, b) = 0,

where a→ −∞, b→∞ and the initial conditions are,

u1(0, x) =

√
2κ

1 + ρ
sech

(√
2κx

)
ei
((
φ−η
)
x
)
,

u2(0, x) =

√
2κ

1 + ρ
sech

(√
2κx

)
ei
((
φ+η
)
x
)
, t ∈ [0, 1],

where φ = 1, η = 0.5, ρ = 2/3 and κ = 1.

As the solver cannot solve complex-valued PDEs, this system is separated into real and complex parts, which can be

combined after the computation has been performed to obtain the solution to this problem. Additionally, we choose xa = −30

and xb = 90, as the code can not treat boundary conditions imposed at ±∞. The source code implementing this problem is

given below.

The number of PDEs in this system.

npde = 4

Initialize problem -dependent parameters.

tempt1 = numpy.sqrt (6.0/5.0)

tempt2 = numpy.sqrt (2.0)

17

Function defining the PDE system.

def f(t, x, u, ux , uxx , fval):

fval [0] = -0.5*ux[0] - 0.5* uxx [1] - u[1] \

* ((u[0] * u[0] + u[1] * u[1]) + 2.0/3.0 \

* ((u[2] * u[2] + u[3] * u[3])))

fval [1] = - 0.5 * ux[1] + 0.5 * uxx [0] + u[0] \

* ((u[0] * u[0] + u[1] * u[1]) + 2.0/3.0 \

* ((u[2] * u[2] + u[3] * u[3])))

fval [2] = 0.5 * ux[2] - 0.5 * uxx [3] - u[3] \

* ((u[2] * u[2] + u[3] * u[3]) + 2.0/3.0 \

* ((u[0] * u[0] + u[1] * u[1])))

fval [3] = 0.5 * ux[3] + 0.5 * uxx [2] + u[2] \

* ((u[2] * u[2] + u[3] * u[3]) + 2.0/3.0 \

* ((u[0] * u[0] + u[1] * u[1])))

return fval

Function defining the left spatial boundary condition.

def bndxa(t, u, ux , bval):

bval [0] = ux[0]

bval [1] = ux[1]

bval [2] = ux[2]

bval [3] = ux[3]

return bval

Function defining the right spatial boundary condition.

def bndxb(t, u, ux , bval):

bval [0] = ux[0]

bval [1] = ux[1]

bval [2] = ux[2]

bval [3] = ux[3]

return bval

Function defining the initial conditions.

def uinit(x, u):

u[0] = tempt1/numpy.cosh(tempt2*x)*numpy.cos (0.5*x)

u[1] = tempt1/numpy.cosh(tempt2*x)*numpy.sin (0.5*x)

u[2] = tempt1/numpy.cosh(tempt2*x)*numpy.cos (1.5*x)

u[3] = tempt1/numpy.cosh(tempt2*x)*numpy.sin (1.5*x)

return u

Instantiate problem definition object.

problem_definition = bacoli_py.ProblemDefinition(npde , f=f,

bndxa=bndxa ,

bndxb=bndxb ,

uinit=uinit)

Create Solver object. Here use the Runge -Kutta method for time

integration and allow a large number of spatial subintervals to be

used.

solver = bacoli_py.Solver(t_int='r', nint_max =2000)

Set t_0.

18

initial_time = 0

Initial spatial mesh.

initial_mesh = numpy.linspace (-30, 90, 101)

Output points

tspan = numpy.linspace (0.001 , 50, 1001)

xspan = numpy.linspace (-30, 90, 1001)

Set a high level of error control.

atol = 1.0e-6

rtol = atol

Solve the nonlienar Schrodinger system.

evaluation = solver.solve(problem_definition , initial_time , initial_mesh ,

tspan , xspan , atol , rtol)

The solution components to the nonlinear Schrödinger system are plotted below in Figures 7-10.

Figure 7: Schrödinger System - u1(t, x) Figure 8: Schrödinger System - u2(t, x)

Figure 9: Schrödinger System - u3(t, x) Figure 10: Schrödinger System - u4(t, x)

19

4.4 Two Layer Burgers Equation

To increase the performance of bacoli_py, it is possible to define the callback functions in a ProblemDefinition as compiled

Fortran subroutines. In this example, we demonstrate how this can be done in the context of solving the Two Layer Burgers

Equation (TLBE). This PDE is given by

ut(t, x) = εuxx(t, x)− u(t, x)ux(t, x), (13)

with initial and (Dirichlet) boundary conditions chosen such that (13) has the exact solution

u(t, x) =
0.1e−A + 0.5e−B + e−C

e−A + e−B + e−C
, t ∈ [0, 1], x ∈ [0, 1],

where,

A =
0.05

ε
(x− 0.5 + 4.95t), B =

0.25

ε
(x− 0.5 + 0.75t), C =

0.5

ε
(x− 0.375), ε ∈ R.

We first define Fortran 95 callback routines for each of the callback functions representing the TLBE, its initial conditions,

and its boundary conditions. The numpy.f2py module is used to build an extension module containing these Fortran

subroutines, callable from Python.

import numpy.f2py as f2py

String defining the Fortran 95 callback subroutines.

prob_def_f = """

subroutine f(t, x, u, ux , uxx , fval)

integer npde

parameter (npde =1)

double precision t, x, u(npde), ux(npde)

double precision uxx(npde), fval(npde)

double precision eps

parameter (eps=1d-4)

fval (1) = eps*uxx (1) - u(1)*ux(1)

return

end

subroutine bndxa(t, u, ux , bval)

integer npde

parameter (npde =1)

double precision t, u(npde), ux(npde), bval(npde)

double precision eps

parameter (eps=1d-4)

double precision a1, a2, a3, expa1 , expa2 , expa3 , temp

20

a1 = (0.5d0 - 4.95d0 * t) * 0.5d-1 / eps

a2 = (0.5d0 - 0.75d0 * t) * 0.25d0 / eps

a3 = 0.1875 d0 / eps

expa1 = 0.d0

expa2 = 0.d0

expa3 = 0.d0

temp = max(a1, a2, a3)

if ((a1-temp) .ge. -35.d0) expa1 = exp(a1-temp)

if ((a2-temp) .ge. -35.d0) expa2 = exp(a2-temp)

if ((a3-temp) .ge. -35.d0) expa3 = exp(a3-temp)

bval (1) = u(1) - (0.1d0*expa1 +0.5d0*expa2+expa3) &

/ (expa1+expa2+expa3)

return

end

subroutine bndxb(t, u, ux , bval)

integer npde

parameter (npde =1)

double precision t, u(npde), ux(npde), bval(npde)

double precision eps

parameter (eps=1d-4)

double precision a1, a2, a3, expa1 , expa2 , expa3 , temp

a1 = (-0.5d0 - 4.95d0 * t) * 0.5d-1 / eps

a2 = (-0.5d0 - 0.75d0 * t) * 0.25d0 / eps

a3 = - 0.3125 d0 / eps

expa1 = 0.d0

expa2 = 0.d0

expa3 = 0.d0

temp = max(a1, a2, a3)

if ((a1-temp) .ge. -35.d0) expa1 = exp(a1-temp)

if ((a2-temp) .ge. -35.d0) expa2 = exp(a2-temp)

if ((a3-temp) .ge. -35.d0) expa3 = exp(a3-temp)

bval (1) = u(1) - (0.1d0*expa1 +0.5d0*expa2+expa3) &

/ (expa1+expa2+expa3)

return

end

subroutine uinit(x, u)

integer npde

parameter (npde =1)

double precision x, u(npde)

double precision eps

parameter (eps=1d-4)

double precision a1, a2, a3, expa1 , expa2 , expa3 , temp

a1 = (-x + 0.5d0) * 0.5d-1 / eps

a2 = (-x + 0.5d0) * 0.25d0 / eps

a3 = (-x + 0.375 d0) * 0.5 / eps

expa1 = 0.d0

expa2 = 0.d0

expa3 = 0.d0

temp = max(a1, a2, a3)

if ((a1-temp) .ge. -35.d0) expa1 = exp(a1-temp)

if ((a2-temp) .ge. -35.d0) expa2 = exp(a2-temp)

21

if ((a3-temp) .ge. -35.d0) expa3 = exp(a3-temp)

u(1) = (0.1d0*expa1 +0.5d0*expa2+expa3) / (expa1+expa2+expa3)

return

end

"""

Build extension module containing these callbacks.

f2py.compile(prob_def_f , modulename='problemdef ', verbose=0, extension='.f95')

After the extension module has been built, the compiled callback functions can be used with bacoli_py. To do this,

a ProblemDefinition object is defined which contains pointers to these compiled subroutines in place of the usual Python

functions.

import bacoli_py

import numpy

Import Fortran callbacks from extension module.

from problemdef import f, bndxa , bndxb , uinit

Specify the number of PDE's in this system.

npde = 1

Pack all of these callbacks and the number of PDE's into a

ProblemDefinition object.

problem_definition = bacoli_py.ProblemDefinition(npde , f=f._cpointer ,

bndxa=bndxa._cpointer ,

bndxb=bndxb._cpointer ,

uinit=uinit._cpointer)

bacoli_py can then be used in almost entirely the same way as we saw in the previous examples. The only exception to

this being that the flag vec in the call to the Solver.solve method must be set to False, indicating that the usual vector

optimizations used in bacoli_py should not be used.

Initialize the Solver object.

solver = bacoli_py.Solver ()

Specify initial time , boundary points , output_points and output_times.

Set t0.

initial_time = 0.0

Define the spatial boundaries.

initial_mesh = [0, 1]

Choose output times and points.

tspan = numpy.linspace (0.001 , 1, 100)

xspan = numpy.linspace(0, 1, 100)

Solve this problem.

evaluation = solver.solve(problem_definition , initial_time , initial_mesh ,

tspan , xspan , vec=False , dirichlet=True)

The computed solution is plotted in Figure 11.

22

Figure 11: Numerical solution to Two Layer Burgers Equation ε = 10−4 using compiled Fortran callback functions.

References

[1] J. Pew, Z. Li, and P. Muir, “Algorithm 962: BACOLI: B-spline adaptive collocation software for PDEs with interpolation-

based spatial error control,” ACM Transactions on Mathematical Software, vol. 42, no. 3, p. 25, 2016.

[2] J. Pew, C. Tannahill, T. Murtha, and P. Muir, “Gaussian collocation/Runge-Kutta PDE software with interpolation-

based error control,” Submitted to ACM Transactions on Mathematical Software, 2019.

[3] B. Keyfitz and N. Keyfitz, “The McKendrick partial differential equation and its uses in epidemiology and population

study,” Mathematical and Computer Modelling, vol. 26, no. 6, pp. 1–9, 1997.

[4] T. Chan and J. Shen, Image processing and analysis: variational, PDE, wavelet, and stochastic methods. Society for

Industrial and Applied Mathematics, 2005.

[5] J. Pew, Z. Li, C. Tannahill, P. Muir, and G. Fairweather, “Performance analysis of error-control b-spline gaussian

collocation software for pdes,” Computers & Mathematics with Applications, vol. 77, no. 7, pp. 1888–1901, 2019.

[6] Adams, M and Tannahill, C and Muir, P, “Error control Gaussian collocation software for boundary value ODEs and

1D time-dependent PDEs,” Numerical Algorithms, pp. 1–15, 2019.

23

[7] J. Dı́az, G. Fairweather, and P. Keast, “Algorithm 603: COLROW and ARCECO: FORTRAN packages for solving

certain almost block diagonal linear systems by modified alternate row and column elimination,” ACM Transactions on

Mathematical Software, vol. 9, no. 3, pp. 376–380, 1983.

[8] P. Keast, “LAMPAK: a Fortran package for solving certain almost block diagonal matrices,” Unpublished Software.

[9] T. Oliphant, “NumPy: A guide to NumPy.” USA: Trelgol Publishing, 2006–. [Online; accessed June 5, 2019].

[10] P. Peterson, “F2py: a tool for connecting Fortran and Python programs,” International Journal of Computational

Science and Engineering, vol. 4, no. 4, pp. 296–305, 2009.

[11] J. Pew, T. Murtha, C. Tannahill, and P. Muir, “Error control B-spline Gaussian collocation/Runge-Kutta PDE software

with interpolation-based spatial error estimation,” Technical Report 2018 002 Dept. of Mathematics and Computing

Science Technical Report Series, 2018.

[12] C. De Boor, A practical guide to splines, vol. 27. Springer-Verlag New York, 1978.

[13] L. Petzold, “Description of DASSL: a differential/algebraic system solver,” tech. rep., Sandia National Labs., Livermore,

CA (USA), 1982.

[14] E. Hairer and G. Wanner, Solving ordinary differential equations II: stiff and differential-algebraic problems, vol. 14 of

Springer Series in Computational Mathematics. Springer-Verlag, Berlin, Germany, 1988.

[15] J. Pew, T. Murtha, C. Tannahill, and P. Muir, “Performance Analysis of Interpolation-based Spatial Error Control

B-spline Gaussian Collocation PDE Software: BDF Time Integration vs. IRK Time Integration,” Technical Report

2019 001 Dept. of Mathematics and Computing Science Technical Report Series, 2019.

24

	Introduction
	Overview of BACOLI & BACOLRI
	Description of bacoli_py
	Basic Usage
	Detailed Description

	Examples
	One Layer Burgers Equation
	Catalytic Surface Reaction Model
	Nonlinear Schrödinger System
	Two Layer Burgers Equation

